

Blood 142 (2023) 2555

The 65th ASH Annual Meeting Abstracts

POSTER ABSTRACTS

203.LYMPHOCYTES AND ACQUIRED OR CONGENITAL IMMUNODEFICIENCY DISORDERS

Primary Immune Regulatory Disorders (PIRDs) That Amplify mTOR Signaling Share a T Cell Exhaustion-like Process

Peyton E Conrey¹, Jose Campos¹, Andrea Mauracher, MDPhD¹, Samir Sayed¹, Jolan E. Walter, MD PhD², Helen Su, MDPhD³, Sara Barmettler, MD⁴, Jennifer W Leiding, MD⁵, Megan Cooper, MDPhD⁶, Suzanne P MacFarland, MD⁷, Melanie A Ruffner, MDPhD¹, Jocelyn R Farmer, MDPhD⁸, V. Koneti Rao, MD⁹, Sarah E Henrickson, MDPhD¹

¹ Department of Pediatrics, Allergy Immunology Division, Children's Hospital of Philadelphia, Philadelphia, PA

² Division of Allergy & Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL

³NIAID, NIH, Bethesda, MD

⁴Massachusetts General Hospital, Boston, MA

⁵ Johns Hopkins University School of Medicine, Baltimore, MD

- ⁶Department of Pediatrics, Washington University, St. Louis
- ⁷ Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- ⁸Lahey Health, Boston, MA
- ⁹NIAID National Institutes of Health, Bethesda, MD

Background: Primary Immune Regulatory Disorders (PIRDs) are a complex and challenging-to-treat subset of Inborn Errors of Immunity (IEI), which are characterized by immune dysregulation leading to recurrent infections, lymphoproliferation, and autoimmunity including refractory cytopenias. Since many ultra-rare monogenic PIRDs exist, it is not feasible to design targeted therapies for each. An alternate strategy is to identify shared aspects of T cell dysfunction and strategies targeting them. We have focused our studies on PIRDs that chronically amplify T cell receptor (TCR) signaling, mimicking chronic infection. Under conditions of chronic inflammation and antigen presentation, seen during chronic infections, CD8 T cell exhaustion (Tex) can result and is characterized by increased inhibitory receptor expression, altered transcriptional networks, epigenetic poise, and impaired T cell functions including cytokine production. Here, we have evaluated CD8 T cell dysfunction in PIRDs, including the potential for Tex.

Methods: Deep immune phenotyping and T cell functional analyses were performed using CyTOF and spectral flow cytometry, in addition to single cell RNA-sequencing and CITE-seq from untreated PIRD and healthy control PBMCs. Finally, CRISPR/Cas9 editing in healthy control CD8 T cells was used to create a cellular disease model.

Results: We identified a Tex-like process in activated PI3 kinase delta syndrome (APDS), CTLA-4 haploinsufficiency, and Rasassociated Autoimmune Leukoproliferative Disease (RALD), which share increased mTOR activation. We identified increased PD-1, CD39, TIGIT and TOX expression on CD8 T cells consistent with a Tex-like phenotype. We also found impaired CD8 T cell cytokine and proliferation consistent with Tex. Lastly, a cellular model of CTLA-4 haploinsufficiency was created for perturbation studies to evaluate best available therapies and target novel therapeutics in these rare disorders.

Conclusion: By identifying shared patterns of CD8 T cell dysfunction in these ultra-rare disorders, we may both identify novel therapeutic strategies and increase our understanding of CD8 T cell function, including cytokine production.

Disclosures Conrey: Intregal Molecular: Current Employment. **Walter:** Pharming: Consultancy, Speakers Bureau; Regeneron: Consultancy, Research Funding; Enzyvant: Consultancy; ADMA Biologicals: Consultancy, Research Funding; Grifols: Consultancy; CSL-Behring: Consultancy; X4 Pharmaceuticals Inc.: Consultancy, Research Funding; Takeda: Consultancy, Research Funding, Speakers Bureau; Janssen: Research Funding; Chiesi: Research Funding; MustangBio: Research Funding; Octapharma: Research Funding; Novartis: Research Funding; Bristol-Myers Squibb: Research Funding. Leiding: bluebird bio: Current Employment. Henrickson: Horizon Therapeutics: Consultancy.

https://doi.org/10.1182/blood-2023-188195